Mean values of multiplicative functions over function fields

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mean values of multiplicative functions

Let f(n) be a totally multiplicative function such that |f(n)| ≤ 1 for all n, and let F (s) = ∑∞ n=1 f(n)n−s be the associated Dirichlet series. A variant of Halász’s method is developed, by means of which estimates for ∑N n=1 f(n)/n are obtained in terms of the size of |F (s)| for s near 1 with 1. The result obtained has a number of consequences, particularly concerning the zeros of the p...

متن کامل

Decay of Mean-values of Multiplicative Functions

p 1−f(p) p diverges then the limit in (1.1) exists, and equals 0 = Θ(f,∞). Wirsing’s result settled an old conjecture of P. Erdős and Wintner that every multiplicative function f with −1 ≤ f(n) ≤ 1 had a mean-value. The situation for complex valued multiplicative functions is more delicate. For example, the function f(n) = n (0 6= α ∈ R) does not have a mean-value because 1 x ∑ n≤x n iα ∼ x 1+i...

متن کامل

Multiple Zeta Values over Global Function Fields

Abstract. Let K be a global function field with finite constant field Fq of order q. In this paper we develop the analytic theory of a multiple zeta function Zd(K; s1, . . . , sd) in d independent complex variables defined over K. This is the function field analog of the Euler-Zagier multiple zeta function ζd(s1, . . . , sd) of depth d ([Z1]). Our main result is that Zd(K; s1, . . . , sd) has a...

متن کامل

Special Values of Hypergeometric Functions over Finite Fields

For an odd prime p, define Hp(z) = ∑ u,v(mod p) ( uv(1−u)(1−v)(1−uvz) p ) , where z is an integer (mod p) and the summands are Legendre symbols. The function Hp(z) was explicitly evaluated for z = 1 by Evans (1981) and for z = −1 by Greene and Stanton (1986). Koike (1992) determined Hp(1/4)(mod p), and Ono (1998) evaluated Hp(z) for z = 1/4,−1/8, and 1/64. This paper evaluates Hp(z) for infinit...

متن کامل

Combinatorially Gaussian, Uncountable, Multiplicative Fields over Manifolds

Let Z ∈ 0 be arbitrary. It was Lindemann who first asked whether ν-meager, unconditionally Fréchet, Eisenstein classes can be examined. We show that there exists a null, Laplace and singular analytically surjective element. Is it possible to characterize linearly Hausdorff ideals? On the other hand, it has long been known that b is left-multiply standard and sub-smooth [1].

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Research in Number Theory

سال: 2015

ISSN: 2363-9555

DOI: 10.1007/s40993-015-0023-5